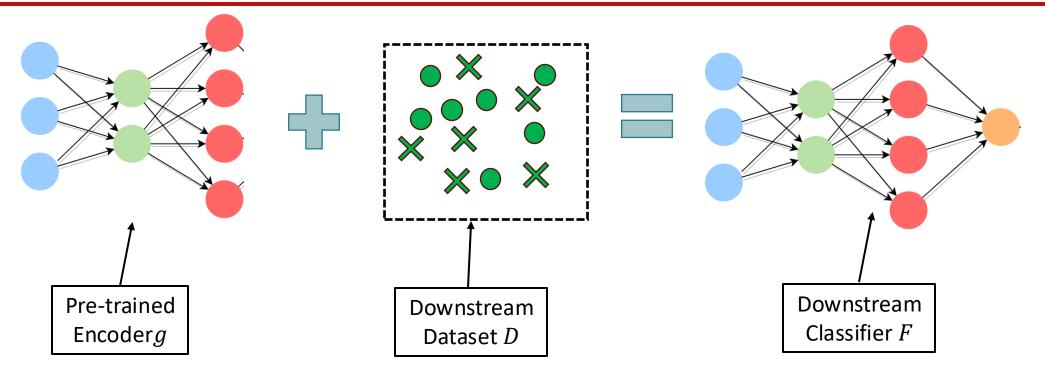
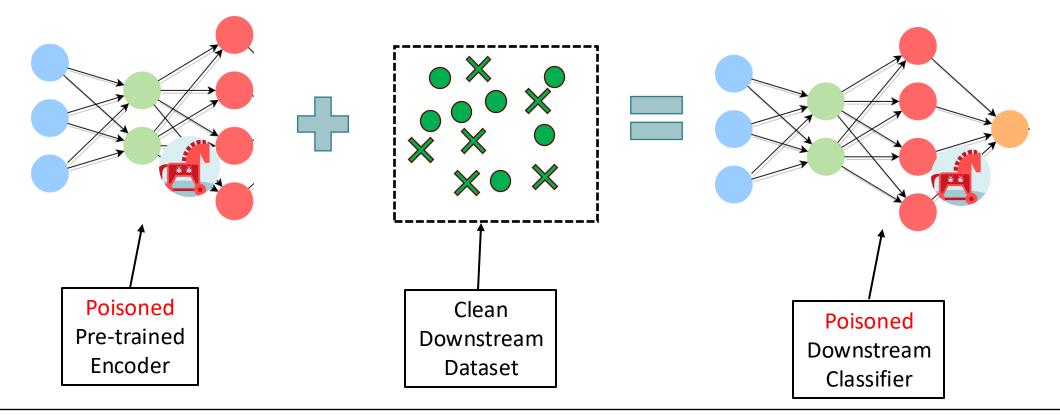


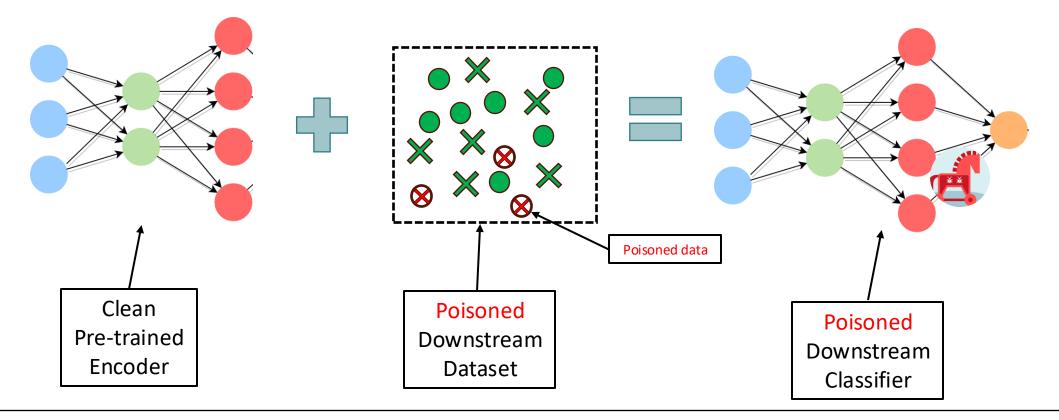
Secure Transfer Learning: Training Clean Model Against Backdoor in Pre-trained Encoder and Downstream Dataset


By: Yechao Zhang, Yuxuan Zhou, Tianyu Li, Minghui Li, Shengshan Hu, Wei Luo, <u>Leo Yu Zhang</u>

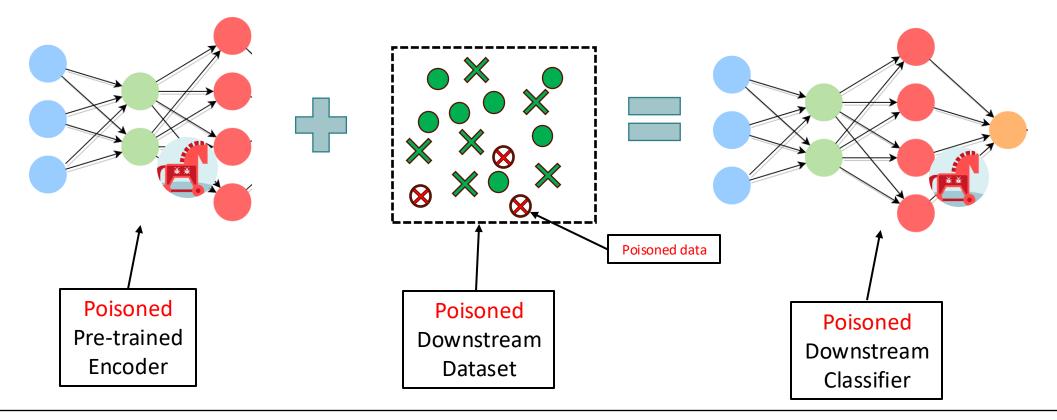
Recap of Backdoor Attack


Recap of Transfer Learning

Transfer Learning (TL) comprised of three parts:


- A pre-trained model (encoder), obtained from a model provider.
- A downstream dataset collected by user, also potentially from internet or a third party.
- Downstream adaptation, i.e., fine-tuning pre-trained model over the downstream dataset.

Threat-1: Encoder Poisoning


The attacker introduces a backdoor into the pre-trained encoder, either by directly tuning it to embed a trigger, or by poisoning pre-training data. The downstream classifier becomes poisoned.

Threat-II: Dataset Poisoning

The attacker introduces a backdoor by poisoning the downstream dataset with injected trigger patterns. The downstream classifier becomes poisoned.

Threat-III: Adaptive Poisoning

The attacker introduces a backdoor by poisoning the pre-trained encoder and the downstream dataset with the same backdoor trigger. The downstream classifier becomes poisoned.

Defense Context in Transfer Learning

Defense Goal:

- Utility: ACC on the downstream task
- Security: low ASR
- **Generalizability**: different datasets, encoders, attack vectors, and hyperparameters

Defender's Capabilities and Constraints:

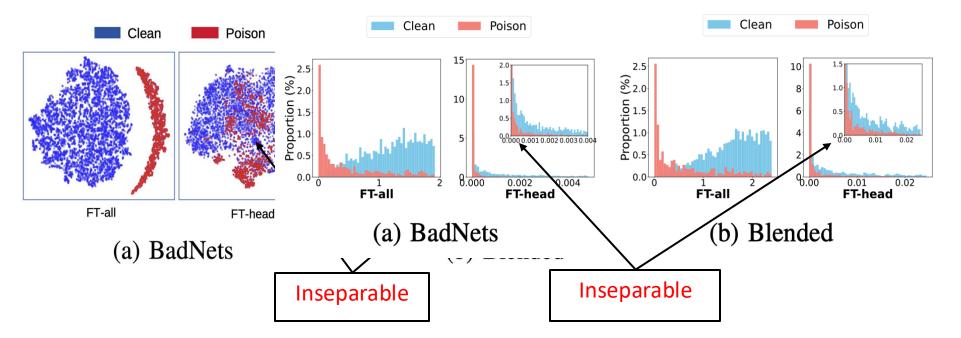
Limited Access to Data and Model:

- No access to pre-training data or hold-out clean data.
- Full control over encoder g and downstream dataset D: access, analysis, and modification allowed.

Ignorance of Threat Model:

- Defender is unaware of the specific backdoor threat.
- Both g and D must be treated as untrustworthy.

Computational Constraints:

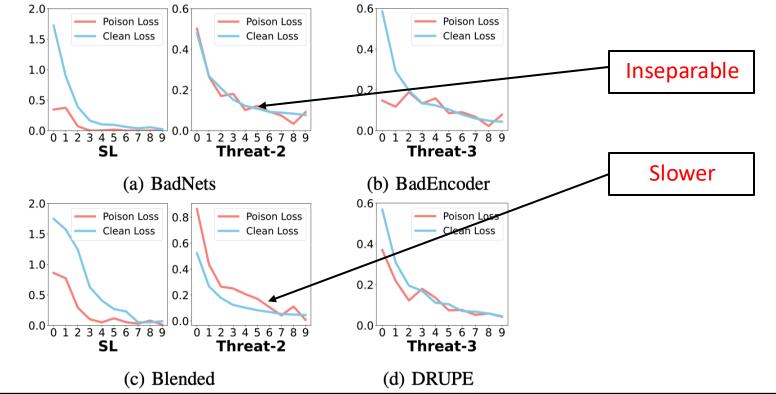

- Defense should be memoryefficient.
- Defense process can span a relatively long period.

Regarding all these constraints, where are we yet?

Current Defense Type I: Poison Detection in SL vs TL

Poison Detection: Identifying and removing abnormal samples from a poisoned dataset (Threat-II).

• Rely on latent separability or believe poison samples are low-loss data.

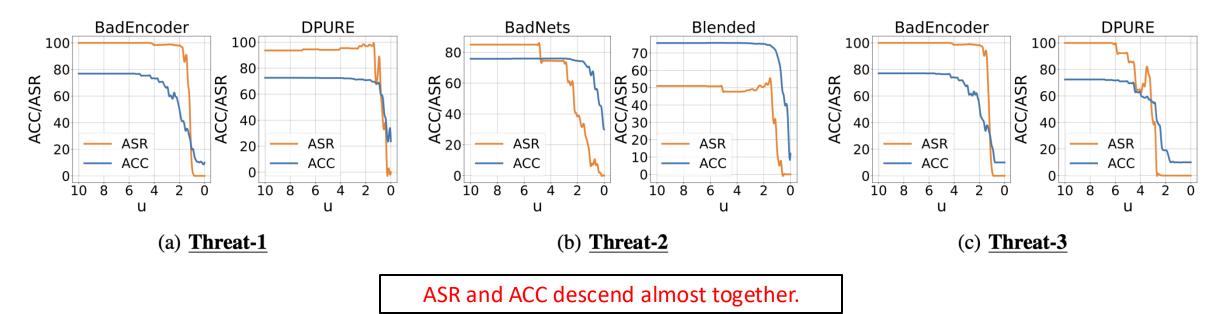

Under transfer learning (even assumes a clean validation dataset):

- latent separability assumption does not hold, the poison samples and benign samples are not easily separable.
- low-loss data are not excessively poison samples.

Current Defense Type II: Poison Suppression in SL vs TL

Poison Suppression: Train a clean model from poisoned dataset by suppressing backdoor feature (**Threat-II and III**).

• Current poison suppression believes backdoor feature learn faster than benign feature.


Under transfer learning,

• backdoor feature does not necessarily learn faster than benign feature.

Current Defense Type III : Poison Removal in SL vs TL

Poison Removal: reconstructing a clean model by direct modifying, regardless of how the backdoor was injected (**Threat-I**, II and III).

 Current poison removal requires a hold-out clean dataset or assumes certain property to determine backdoor-related neurons.

Under transfer learning (without access to clean data),

• Blindly making assumptions on what kind of neurons are more likely to be responsible for backdoor, is also unreliable.

Reactive vs Proactive:

Reactive solution: Identifying what constitutes poisoned features or characteristics (followed by eliminating these poison elements).

- Known threats
- What if the threats are unknown: e.g., novel types of attacks, different training paradigms.

Proactive mindset: identifying and amplifying clean elements to defend against unknown backdoor threats.

Identifying clean elements (data and neuron/channel):

- Sifting a Clean Sub-Set:
 - Majority Rule: A high-credible sample should belong to the majority group of samples in a DNN layer.
 - Consistency Rule: A high-credible sample should have consistent nearest neighbors from its class across different DNN layers.
- Filtering the Encoder Channel

Identifying clean elements (data and neuron/channel):

- Sifting a Clean Sub-Set:
 - Majority Rule: A high-credible sample should belong to the majority group of samples in a DNN layer.
 - Consistency Rule: A high-credible sample should have consistent nearest neighbors from its class across different DNN layers.
- Filtering the Encoder Channel:
 - Selective Unlearning: $\max_{\theta_{\text{norm}}} \mathbb{E}_{(x,y)\in\mathcal{D}} \left[\ell \left(f(\phi_{\text{down}}) \circ g(x; \theta_{\text{pre}}), y \right) \right]$
 - Filter Recovering: $\min_{\mathbf{m}^{\kappa}} \mathbb{E}_{(x,y) \in \mathcal{D}_{\text{sub}}} \left[\ell \left(f(\phi_{\text{down}}) \circ g(x; \mathbf{m}^{\kappa} \odot \hat{\theta}_{\text{pre}}), y \right) \right]$
 - Channel Filtering: keep the channels with larger mask values.

Our Proactive Design: Trusted Core Bootstrapping (T-Core)

Bootstrapping Learning (amplifying clean elements):

- Optimization of Untrusted Channels: $\min_{\phi,\psi} \mathbb{E}_{(x,y)\in\mathcal{D}_{clean}} \left[\ell\left(f(\phi)\circ g(x;\psi\cup\chi),y\right)\right]$
- Clean Data Pool Expansion with Loss Guidance: Incorporate samples with the lowest loss from the entire set into the clean pool.
- Clean Pool Expansion with Meta Guidance:

 $\begin{array}{l} \mathsf{Loss}_1 \leftarrow \{\ell(f(\phi) \circ g(x; \phi \cup \chi), y) \mid (x, y) \in \mathcal{D} \setminus \mathcal{D}_{\mathrm{clean}}\};\\ \mathsf{Loss}_2 \leftarrow \{\ell(f(\phi') \circ g(x; \phi' \cup \chi), y) \mid (x, y) \in \mathcal{D} \setminus \mathcal{D}_{\mathrm{clean}}\}; \end{array}$

Incorporate samples with the smallest loss reduction $Loss_1 - Loss_2$ into the clean pool.

Dataset	Dataset	BadNets		Blended		SI	G	Wa	Net	Ta	СТ	Adap-	Blend	Adap-Patch		
Dataset	Poisoning	ACC ↑	ASR↓	ACC↑	ASR↓	ACC↑	ASR↓	ACC↑	ASR↓	ACC↑	ASR↓	ACC↑	ASR↓	ACC↑	ASR↓	
STL-10	No Defense	75.64	90.24	75.65	50.35	76.51	59.97	76.21	4.76	75.19	64.13	75.75	9.04	76.43	1.92	
	Ours	64.08	2.15	65.59	1.60	62.85	6.00	64.55	1.60	66.26	1.00	65.93	3.24	62.55	1.08	
CIFAR-10	No Defense	85.04	92.21	84.84	89.12	84.72	89.10	84.40	9.11	84.28	82.60	83.39	34.34	84.16	5.66	
	Ours	87.38	3.48	87.35	5.90	87.31	2.54	87.58	0.23	89.04	0.10	87.31	2.54	87.38	3.48	
GTSRB	No Defense	81.79	95.02	81.30	90.39	81.90	74.37	80.74	8.81	81.95	89.20	80.85	69.73	78.54	28.20	
	Ours	92.03	1.31	91.37	3.04	94.13	0.38	91.10	1.31	91.82	1.87	90.87	0.62	92.25	1.09	
SVHN	No Defense	59.80	99.42	60.11	98.30	59.83	97.58	59.65	15.77	59.91	91.90	59.84	89.90	59.87	70.86	
	Ours	91.19	4.14	90.88	6.82	91.09	3.22	90.11	1.45	91.25	2.92	90.22	1.31	90.95	1.23	
ImageNet-10	No Defense	85.06	92.85	85.00	40.42	86.29	55.33	85.71	3.33	85.88	95.00	86.35	24.06	85.71	6.48	
	Ours	80.46	3.86	81.65	2.42	82.00	2.85	83.71	0.94	84.53	3.33	80.24	1.94	81.71	2.48	

T-Core consistently yield a low ASR and high ACC.

T-Core's Effectiveness against Encoder Poisoning or Adaptive Poisoning

	Thre	eat-1	Threat-3					
Encoder Poisoning	Pre-training Dataset	Downstream Dataset	Methods	ACC↑	ASR↓	ACC↑	ASR↓	
		STL-10	No Defense	76.58	98.51	76.79	100.00	
		S1L-10	Ours	55.23	4.29	66.24	1.40	
	CIFAR-10	GTSRB	No Defense	80.77	99.63	78.45	99.97	
	CIFAR-10	UISKD	Ours	90.86	3.90	91.92	0.01	
		SVHN	No Defense	65.35	97.56	67.93	99.44	
BadEncoder		SVIIN	Ours	85.93	3.76	92.52	0.65	
DauEncouer		CIFAR-10	No Defense	70.57	98.93	69.66	99.96	
		CITAR-10	Ours	60.65	5.22	62.90	6.80	
	STL-10	GTSRB	No Defense	70.83	98.99	66.67	99.83	
		UISKD	Ours	87.08	4.93	90.43	0.76	
		SVHN	No Defense	64.89	98.98	63.55	99.57	
		5 4 1 1 4	Ours	86.76	6.09	87.34	0.54	
		0777 10	No Defense	71.85	97.72	72.39	99.94	
	CIFAR-10	STL-10	Ours	54.54	6.28	66.38	5.19	
		GTODD	No Defense	76.39	98.10	75.22	99.20	
		GTSRB	Ours	93.28	4.50	90.65	3.73	
		CLUDI	No Defense	72.99	92.71	71.34	99.87	
DDUDE		SVHN	Ours	87.27	6.47	89.57	3.60	
DRUPE	STL-10	CIEAD 10	No Defense	71.14	80.49	71.21	99.66	
		CIFAR-10	Ours	63.93	1.61	63.07	5.70	
		CTODD	No Defense	65.11	85.03	64.90	99.18	
		GTSRB	Ours	84.51	3.97	85.82	0.86	
		SVHN	No Defense	58.43	96.28	58.35	99.66	
		SVHIN	Ours	87.37	5.58	83.91	0.37	
	GTT 10	GTT 10	No Defense	52.15	9.88	53.08	9.81	
	STL-10	STL-10	Ours	48.01	0.18	48.56	1.41	
CTDI	CIEAD 10	CIEAD 10	No Defense	75.31	44.90	75.63	53.56	
CTRL	CIFAR-10	CIFAR-10	Ours	56.66	3.07	59.35	3.72	
	CTODD	CTODD	No Defense	66.78	6.54	64.29	26.11	
	GTSRB	GTSRB	Ours	82.42	0.87	88.11	1.91	
			No Defense	82.85	36.48	83.29	87.94	
SSLBackdoor	ImageNet	ImageNet-10	Ours	72.35	0.42	81.35	1.76	
CommentEncoder	ImageNict	Image Net 10	No Defense	82.35	58.46	82.47	92.12	
CorruptEncoder	ImageNet	ImageNet-10	Ours	72.82	1.03	81.47	4.79	

T-Core consistently yield a low ASR and high ACC.

T-Core's Effectiveness against Encoder and Dataset Poisoning

Encoder Poisoning	Pre-training Dataset	Downstream Dataset	Dataset Poisoning		BadNe ASR-E			Blende ASR-E		ACC	SIG ASR-E	ASR-D	ACC	WaNe ASR-E		ACC	TaCT ASR-E			dap-Bl			dap-Pa ASR-E	
roisoning			No Defense	_							99.99						99.90	62.75			10.14			1.57
		STL-10		67.75			67.04			1	3.88		67.54			67.46			68.75			68.28		6.22
	CIFAR-10	GTSRB	No Defense			93.75	73.22		86.36			74.81	78.17		6.09		99.20	91.73		95.95	65.60			28.43
			Ours No Defense	90.54			88.27 67.98				0.00 98.70		91.88 67.99			92.60	0.80 98.80		87.79 68.07	0.00	3.30	93.90		0.29 71.75
		SVHN		92.19			92.19				4.80		90.20						90.30			92.72		0.07
BadEncoder -		CIFAR-10	No Defense				70.33		71.98				69.94			69.66	99.66	70.00	69.84	99.77			99.76	
		CITAR-10		63.27			62.73				8.29		62.63			65.47	6.36	0100	64.38			63.05		0.13
	STL-10	GTSRB	No Defense Ours	70.67 85.65			69.59 86.03		82.33 0.87	70.86 85.18			69.63 85.27		4.33 4.39		98.05 0.05			99.10 1.10	54.45	69.58 87.05		12.30 1.52
		SVHN	No Defense			98.85					88.96	93.92					87.69			81.29	89.94			26.85
					4.30	10.10	86.63	3.72			9.18		88.96		1.01	86.34	3.15		86.40	4.87	2.09	86.92	6.15	4.50
		STL-10	No Defense	71.94	99.43	75.22	71.09	98.00	53.97	72.49	93.63	35.50	72.08	90.18	10.14	71.78	97.54	49.75	71.34	99.39	11.42	71.63	98.35	1.89
											7.49		64.59				11.24	13.00				65.00		2.96
	CIFAR-10	GTSRB	No Defense Ours	74.35 87.98		94.19 3.16	74.57 90.17			74.95 88.16	74.70		74.48 89.14		6.58 0.47	74.67	72.91		73.95 89.14		61.30 7.63	73.76 89.87		14.79 1.85
	-	SVHN	No Defense			99.45			97.60			94.45				71.31				77.03			76.30	
DRUPE				89.54						89.02			87.19			92.34			89.20			89.70		2.97
DRUFE		CIFAR-10	No Defense				70.71				79.10	69.62			9.27		78.55	69.00		78.63	14.13			4.93
		GTSRB	Ours No Defense	64.74		7.43	63.46				4.94 85.40		66.18 63.99		1.73	66.28	5.49 86.80		62.63	4.96	3.40 67.40	63.56		6.31
	STL-10			86.10			87.08				2.82		84.47			82.18			81.90			81.32		7.58
		SVHN	No Defense			96.56			97.43			91.53					97.46			98.69	84.58			16.52
		SVHN	Ours	82.13	5.95	6.25	83.22	4.03	4.56	83.75	9.64	2.77	82.76	2.45	3.59	83.85	2.93	0.98	81.13	9.01	5.10	83.17	3.05	1.65

T-Core consistently yield a low ASR and high ACC.

Summary

• We identify a complex and challenging yet general backdoor threat model within the transfer learning scenario that previous research has overlooked.

 We conduct an exhaustive analysis of the existing backdoor and reveal their limitations under the transfer learning scenario.

• We propose a proactive mindset as an alternative and introduce a Trusted Core Bootstrapping framework as an instantiation, providing concrete designs that are more robust and generalizable.

Thanks!